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Abstract—CNN-based super-resolution methods achieve great
performance but come with high bandwidth requirements. This
paper proposes a bandwidth efficient CNN-based architecture
for super resolution supporting up to Full HD images at 60 fps.
The bandwidth efficiency is achieved by layer fusion with data
reuse scheduling and dynamic quantization. To maintain a high
utilization of processing elements, the deconvolution operation is
decomposed into a several convolution operations. The proposed
architecture provides a 94.8 % bandwidth reduction. Compared
to the software implementation, less than 1 % performance drop
is induced in this VLSI implementation. The enables the proposed
architecture to obtain state-of-the-art accuracy compared to
existing super-resolution hardware implementations.

Index Terms—Super-resolution, FSRCNN, deconvolution,
VLSI architecture, bandwidth efficiency

I. INTRODUCTION

Super-resolution (SR) is a technique generating high-
resolution (HR) images from low-resolution (LR) ones by in-
ferring the missing high frequency information. SR is adopted
in many computer vision applications but its ill-posed nature
makes it a challenging problem. Although existing CNN-based
SR methods [3] [7] [6] [8] [4] provide superior performance
over conventional dictionary-based methods, they induce vast
bandwidth demands, rendering them impractical for hardware
implementations. The additive deconvolution operation in the
last layer leads to an irregular computation pattern which is
not hardware friendly.

The contribution of this work is threefold:
1) The first CNN-based super resolution VLSI architecture

supporting Full-HD at 60FPS is presented.
2) A bandwidth-efficient CNN-based architecture is pro-

posed with support for upscaling factors × 2, × 3
and × 4.

3) The VLSI implementation achieves state-of-the-art per-
formance among existing hardware SR implementations

The remainder of this paper is organized as follows: Section
II summarizes related works. Our proposed method is pre-
sented in Section III. The experimental results and discussion
are found in Section IV. Finally, the paper is concluded in
Section V.

II. RELATED WORKS

Many different approaches for the super resolution problems
have been proposed in the literature. Among them, the self-
exemplars [5] method can obtain great performance by finding

similar patches in different scales and applying a suitable affine
transform. Learning based methods have dominated the SR
domain since the A+ algorithm [14] was proposed, it transfers
a target region into a sparse representation from which the
super resolved patch is recovered. After the initial work,
SRCNN [3], CNN-based methods [7] [6] [8] [4] have provided
a significant improvement over other methods. Among them,
FSRCNN [4] can significantly reduce the computation of
the neural network while maintaining a good performance.
SR hardware implementations can be categorized into non-
learning methods and learning-based ones. Non-learning meth-
ods are [10] [2] [13] and [11]. Bowen et.al. [2] proposed
a hardware implementation based on the iterative weighted
mean algorithm. An SR hardware architecture based on the
image registration technique has been proposed by Redlich
et.al. in [10]. Another SR hardware implementation based on
the iterative back projection SR algorithm is presented in [11].
They proposed a highly parallel and pipelined implementation
for iterative back projection super-resolution algorithm. All
above works are based on non-learning algorithms and out-
performed by learning-based SR works.

Yang et.al. [15] propose a learning based super-resolution
architecture using sparse dictionary representation without
frame-buffer based on the A+ algorithm [14]. A hardware
architecture based on SRCNN [3] is proposed by Manabe
et.al. [9] which is the first CNN-based SR hardware imple-
mentation. They use horizontal and vertical flips to network
input images to replace pre-enlargement techniques prevent-
ing information loss and enables the network to utilize the
input image size. None of these works can provide Full-HD
resolution output at 60 fps. Our work can provide more than
one scaling factor and achieve the best accuracy among those
hardware implementations.

III. PROPOSED ARCHITECTURE

SRCNN [3] is the first work adopting CNN to solve
the SR problem directly. Input images are up-scaled to the
target resolution before they enter the network. In contrast to
SRCNN, FSRCNN [4] runs the network on the low resolution
image and only upscales in the last layer, at a negligible drop in
quality. The upscaling is realized by a deconvolution operation
in the last layer to obtain the desired spatial extend. Following
notation and definition in [4], the relationship between high-
resolution (HR) network and low-resolution (LR) networks
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is shown in Fig. 1. Without the pre-enlargement, feature
maps in each following layers preserve the original size and
simplify the computation. Although FSRCNN can reduce the
computational complexity, it is still impractical since its vast
bandwidth requirements. The deconvolution operation in the
last layer yields an irregular, hardware-unfriendly computation
pattern.

Fig. 1: CNN-based super resolution network architecture for
(a) VDSR and (b) FSRCNN.

Since CNN-based methods introduce a vast bandwidth
requirement, we employ two techniques to reduce the required
bandwidth to a level that is practical for a hardware implemen-
tation. To further improve the hardware efficiency, the frac-
tional convolution operation (deconvolution) is transformed
into multiple convolutions.

A. Bandwidth Reduction design

The total bandwidth requirement is presented in Eq. (1)

Bandwidth =
∑
l∈L

(
Dl × lengthlD +W l × lengthlW ×γ). (1)

Here, L represents the number of layers, lengthlD and lengthlW
represent the bit length of data and weights in layer l,
respectively. Dl and W l denote the number of data and weight
elements of layer l. γ shows the utilization of the data. If it is
equals to 1, no data is reloaded, all data is reused in an optimal
fashion. In this paper, two techniques are adopted to reduce
the bandwidth. First, layer fusion is adopted to maximize data
reuse by reducing the I/O between two layers l and l + 1.
Second, dynamic quantization is employed to reduce the bit-
length of activation and weight data which are lengthlD and
lengthlW .

The layer fusion accelerator [1] is proposed to merge layers
for a general CNN processor with the aim of reducing input
and output bandwidth. The architecture of the proposed multi-
layer computation using this technique is shown in Fig. 2.
The direct implementation would create huge bandwidth de-
mands from accessing off-chip memory as shown in Fig. 2(a).
The layer-fused architecture can eliminate the traffic between
layers via storing the temporal data on chip as Fig. 2(b). To
further determine the optimized configuration for our scenario,
we analyze which layers to fuse and how to choose tile

size as shown in Fig. 3. As a result, we choose 6 − 2
which means fusing the first 6 layers and last two layers
separately since it leads to the smallest on-chip memory
requirement at an acceptable bandwidth. Under the 128-bit I/O
and 200 MHz condition the bandwidth constraint is 3.2 GB/s
as presented in Fig. 3 and the proposed architecture can satisfy
the constraint which renders this CNN-based super-resolution
algorithm VLSI implementation practicable.

(a) Direct Mapping

(b) Layer Fused Architecture

Fig. 2: Architecture comparison for layer fusion: (a) without
layer fused (b) and the architecture with layer fused.

Fig. 3: Layer fused condition analysis. The 6−2 configuration
is adopted because it requires less on-chip memory.

Dynamic quantization selects appropriate quantization fac-
tors for each layer adopted in the proposed architecture. Ac-
cording to experiment results, 10-bit word length is chosen for
both data, Dl, and weights, W l. Further results and discussion
are found in Section IV

B. De-convolution architecture design

Each layer except for the last one consists of a standard
convolution operation. To further utilize processing elements,
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the deconvolution is executed using convolution hardware. The
concept is to use multi-size convolution filters to replace the
original de-convolution filter so that the processing elements
can support the de-convolution computation as well. We can
easily find that the output of de-convolution is the dot product
of the adjacent pixel with corresponding weights, and it is
the same computation as the convolution. The original de-
convolution filter is composed into corresponding convolution
kernels with different coefficients. Recently, we found that the
concept is similar to the one proposed by Shi et.al. [12]. The
example of a ×2 deconvolution remapped to convolution is
shown in Fig. 4. It is worth to mention that we decrease the
kernel size while scaling is increased. This makes ×2, ×3 and
×4 require similar amounts of computation.

(a) (b) (c)

(d) (e)

Fig. 4: An example of remapping ×2 de-convolution pro-
cessing to a convolution like process. (a) The original de-
convolution kernel, (b) remapped convolution-like kernel, (c)
partial output feature, (d) input feature, and (e) weighted
summation of the pixel.

C. The proposed architecture

The proposed architecture is presented in Fig. 5. The com-
putation unit is pipelined into two stages to further improve
the throughput. The first stage is the multiplier array. The
second stage is consist of the summation by adder trees and the
dynamic quantization by shift adders. In the end, we realize
the PReLU operation by another group of shift adders.

IV. EXPERIMENTAL RESULTS

We implement our design in TSMC’s 40 nm technology. To
achieve a realistic implementation, the proposed architecture
uses of two techniques to reduce bandwidth requirement.
Results for different quantization activation and weight word
length are shown in Fig. 6. As the results indicate, accuracy
is saturated when a word length of 10 bit is reached, hence
we use 10 bits for both activations and weights.

Effects of bandwidth and accuracy of each technique are
listed in Table I. The complete proposed architecture achieves
a bandwidth reduction of 94.8%. As Table I shows, the
accuracy drop results only from the quantization and the
accuracy degradations for both datasets are below 1%.

…

…

(a) (b)

Fig. 5: (a)The proposed architecture and (b) the process of
each operation.
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Fig. 6: Quantization bits and quality with (a) activation and
(b) weight data.

The specification of the proposed architecture in comparison
with others is listed in Table III. The comparison images are
shown in Fig. 7. FSRCNN-RTL outperforms A+ [14] and
SRCNN [3] algorithms in high frequency regions and as well
as in terms of PSNR. Furthermore, the proposed FSRCNN-
RTL is more accurate than the implementations of Yang [15]
and Manabe [9] since both architectures suffer the accuracy
degradation from their quantization steps.

V. CONCLUSION

An accurate and bandwidth efficient architecture for super-
resolution CNN-based supporting ×2, ×3 and ×4 upscaling
is proposed in this paper. Modified layer fusion and dynamic
quantization are adopted to reduce bandwidth. The bandwidth

TABLE I: Bandwidth analysis for separate techniques.

Techniques BW. Red. Set5 Set14
(GB/s) (%) PSNR (%) PSNR (%)

Baseline Design 20.22 0 37.0 0 32.63 0
Only Layer Fusion 1.68 91.7 37.0 0 32.63 0
Only Quantization 12.64 37.5 36.67 0.9 32.39 0.7

Proposed 1.05 94.8 36.67 0.9 32.39 0.7
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Set14-baboon Ground Truth
Bicubic 

(24.85 dB)

A+ 

(25.6 dB)

FSRCNN

 (25.82 dB)

FSRCNN-RTL 

(25.79 dB)

SRCNN 

(25.73 dB)

Set14-Comic Ground Truth
Bicubic

 (26.01 dB)

A+

 (28.3 dB)

FSRCNN 

(28.89 dB)

FSRCNN-RTL

 (28.81 dB)

SRCNN

 (28.52 dB)

Set14-PPT3 Ground Truth
Bicubic 

(26.87 dB)

A+ 

(30.1 dB)

FSRCNN 

(31.65 dB)

FSRCNN-RTL

 (31.55 dB)

SRCNN

 (31.52 dB)

Fig. 7: Comparison figures.

TABLE II: The accuracy comparison of each HW implemene-
tations.

Accuracy ×2 ×3 ×4
(dB) Set 5 Set 14 Set 5 Set 14 Set 5 Set 14

Manabe NA NA NA NA NA NA
Liu et.a1. 33.83 29.77 NA NA NA NA
FSRCNN 37 32.63 33.16 29.43 30.71 27.59

FSRCNN-RTL 36.67 32.39 32.99 29.33 30.55 27.48
Quality drop 0.33 0.24 0.17 0.1 0.16 0.11

Drop Ratio (%) 0.9 0.7 0.5 0.3 0.5 0.4

is reduced to a level that allows an efficient hardware imple-
mentation using three techniques, the effect of each of them is
analyzed. In total, a 94.8% bandwidth reduction is achieved.
Furthermore, this work achieves superior quality compared to
previous SR VLSI implementations.

TABLE III: Hardware implementations comparison.

Manabe [9] Yang [15] Proposed
SR Algorithm SRCNN A+ FSRCNN

Technology Virtex UltraScale TSMC 90 nm TSMC 40 nm
XCVU095

Frequency (MHz) 133 148 200
Gate Count (k) NA 2253 3368

Input Size 960× 540 960× 540 960× 540

Frame rate (fps) 48 60 75,75,62
Scale Factor 2 2 2,3,4

PSNR (Set 5 ×2) NA 33.83 36.67
PSNR (Set 14 ×2) NA 29.77 32.39
On-chip Mem. (kB) NA 231.74 53.4
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